La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).
La distribución de las hojas en un tallo. Ver: Sucesión de Fibonacci.
La relación entre las nervaduras de las hojas de los árboles
La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior).
La cantidad de espirales de una piña (ocho y trece espirales), flores o inflorescencias. Estos números son elementos de la sucesión de Fibonacci y el cociente de dos elementos consecutivos tiende al número áureo.
La cantidad de pétalos en las flores. Existen flores con 3, 5 y 8 pétalos y también con 13, 21, 34, 55, 89 y 144.
La distribución de las hojas de la yuca y la disposición de las hojas de las alcachofas.
La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol o de cefalópodos como el nautilus. Hay por lo menos tres espirales logarítmicas más o menos asimilables a proporciones aúreas. La primera de ellas se caracteriza por la relación constante igual al número áureo entre los radiovectores de puntos situados en dos evolutas consecutivas en una misma dirección y sentido. Las conchas del Fusus antiquus, del Murex, de Scalaria pretiosa, de Facelaria y de Solarium trochleare, entre otras, siguen este tipo de espiral de crecimiento.Se debe entender que en toda consideración natural, aunque involucre a las ciencias consideradas más matemáticamente desarrolladas, como la Física, ninguna relación o constante que tenga un número infinito de decimales puede llegar hasta el límite matemático, porque en esa escala no existiría ningún objeto físico. La partícula elemental más diminuta que se pueda imaginar es infinitamente más grande que un punto en una recta. Las leyes observadas y descriptas matemáticamente en los organismos las cumplen transgrediéndolas orgánicamente.
Para que las hojas esparcidas de una planta (Ver Filotaxis) o las ramas alrededor del tronco tengan el máximo de insolación con la mínima interferencia entre ellas, éstas deben crecer separadas en hélice ascendente según un ángulo constante y teóricamente igual a 360º (2 - φ) ≈ 137º 30' 27,950 580 136 276 726 855 462 662 132 999..." En la naturaleza se medirá un ángulo práctico de 137º 30' o de 137º 30' 28" en el mejor de los casos. Para el cálculo se considera iluminación vertical y el criterio matemático es que las proyecciones horizontales de unas sobre otras no se recubran exactamente. Aunque la iluminación del Sol no es, en general, vertical y varía con la latitud y las estaciones, esto garantiza el máximo aprovechamiento de la luz solar. Este hecho fue descubierto empíricamente por Church y confirmado matemáticamente por Weisner en 1875. En la práctica no puede medirse con tanta precisión el ángulo y las plantas lo reproducen "orgánicamente"; o sea, con una pequeña desviación respecto al valor teórico. No todas las plantas se benefician con un máximo de exposición solar o a la lluvia, por lo que se observan otros ángulos constantes diferentes del ideal de 137ª 30'. Puede encontrar una tabla en la página 26 del documento completo accesible en el enlace de la referencia.
En la cantidad de elementos constituyentes de las espirales o dobles espirales de las inflorescencias, como en el caso del girasol, y en otros objetos orgánicos como las piñas de los pinos se encuentran números pertenecientes a la sucesión de Fibonacci. El cociente de dos números sucesivos de esta sucesión tiende al número áureo.
Existen cristales de pirita dodecaédricos pentagonales (piritoedros) cuyas caras son pentágonos irregulares. Sin embargo, las proporciones de dicho poliedro irregular no involucran el número áureo. En el mundo inorgánico no existe el pentágono regular. Éste aparece (haciendo la salvedad de que con un error orgánico; no podemos pretender exactitud matemática al límite) exclusivamente en los organismos vivos.
Félix Velasco - Blog
No hay comentarios:
Publicar un comentario